

Corporation

VDL – 001 VariDelay™I

Manually Variable Fiber Optic Delay Line

Operation Manual

Oct 10, 2002

General Photonics Corp. 5228 Edison Ave. Chino, CA 91710 USA Ph: (909) 590-5473 Fax: (909) 902-5536 www.generalphotonics.com

Table of Contents:

Section 1	Specifications	3
Section 2	Overview	
Section 3	Unpacking	
Section 4	Device Description	
Section 5	Installation	
Section 6	 Device Operation 6.1 Fiber connections 6.2 Delay time calculation and ruler scale 6.3 Polarization properties 	6 6 7

Section 1. Specifications:

The specifications of the VariDelayTM manually variable optical delay line are summarized in Table 1. The insertion loss and return loss are measured without connectors.

Insertion Loss	1.0 dB nominal
Incortion Loss Variation	+/- 0.3 dB max. over entire delay range for 330 ps model
Insertion Loss variation	+/- 0.5 dB max. over entire delay range for 600 ps model
Return Loss	50 dB min.
Deley Dongo	$0 \sim 330$ ps continuous for 330 ps model
Delay Kange	$0 \sim 600$ ps continuous for 600 ps model
Readout Scale Resolution	0.05 mm
Wavelength	1270 ~ 1650 nm
PDL	0.1 dB max. for single mode fiber
Filt on Tomo	Single mode fiber: SMF-28 standard
Fiber Type	Polarization maintaining fiber: PM Panda fiber standard
Extinction Ratio	>18 dB for PM fiber
Operation Temperature	0°C to 40°C
Storage Temperature	-40°C to 60°C
Maximum Power	300 mW min.
Dimensions	1.00" (H) x 2.10" (W) x 4.15" (L) for 330 ps model
Dimensions	1.00" (H) x 2.10" (W) x 6.00" (L) for 600 ps model

Table 1 VariDelayTM manually variable optical delay line specifications

Section 2. Overview:

General Photonics' manual variable optical delay line provides precision optical path variation of more than 18 cm, which corresponds to 600 picoseconds maximum delay in time domain. The delay time can be manually adjusted from 0 to 600 picoseconds continuously based on a sliding delay indicator on the package. As shown in Figure 1, VariDelayTM employs a compact and rugged package design that makes the device ideal for network equipment and test instrument integration. It can also be used in laboratories for precision optical path length control or timing alignment. The major applications of VariDelayTM include time division multiplexing (TDM), pulse alignment, optical spectrum analysis, and interferometry.

The VariDelayTM family consists two members: a 600 ps (18 cm) optical delay model and a 330 ps (10 cm) optical delay model. Each model can have single mode (SM) fiber or polarization maintaining (PM) fiber interfaces for different customer applications.

General Photonics Corp. also has a motorized variable optical delay line, which can be easily controlled with high precision by front panel or computer commands. Please contact General Photonics Corp. for details.

Figure 1. General Photonics' manually variable optical delay line—VariDelayTM. In this picture, a manual dial (shining metallic color) is shown at the left end and input/output fibers are at right end of the delay block. The delay length ruler is on the backside and is not shown in the picture.

Section 3. Unpacking:

VariDelayTM device requires careful handling. It is important to carry the device by holding the delay block part. Direct force applied to the optical fibers may damage the optical fiber connection and degrade device performance.

Section 4. Device Description:

VariDelayTM consists of a delay block and two input/output fiber ports. Unless specified, the two fiber ports are symmetrical and therefore interchangeable. A manual adjustment dial and a linear delay indicator are mounted on the delay block. There are four 4-40 tapped mounting holes (0.14 inch or 3.5 mm in depth) on the bottom side of the delay block to facilitate PC board mounting or other package configurations. The dimensions and mechanical layout of the VariDelayTM manually variable optical delay line are shown in Figure 2.

Figure 2. Mechanical layout of the VariDelayTM manually variable optical delay line: (a) 330 ps model, and (b) 600 ps model

Section 5. Installation:

VariDelayTM can be mounted on PC board or used as a stand-alone device. When mounting to a PC board, please use the correct mounting screws (English 4-40 size) with appropriate length. The screw holes are only 0.14 inch or 3.5 mm deep. Please refer to Fig. 2 for mounting hole locations. Do not over fasten the mounting screws.

Section 6. Device Operation:

6.1 Fiber connections

Before connection to optical system, it is strongly recommended that the fiber connectors be cleaned according to standard procedures used in industry. Unless specified in a special device, the VariDelayTM is a bi-directional device and therefore fiber connectors can be used as either input or output ports.

For PM fiber connections, the user should identify the orientation of the source polarization, because the polarization maintaining VariDelayTM model is designed for *single* linear polarization state aligned along the slow axis of PM fiber or fiber connector key.

6.2 Delay time calculation and ruler scale

Once the VariDelayTM is connected to the fiber optical system, one can use the manual dial to adjust delay time. The delay time change can be calculated from the ruler readings on the side of the VariDelayTM. As shown in Figure 3, the ruler readings are centimeters with millimeter divisions. In VariDelayTM device, the total delay length change is 2 times the length change reading on the ruler. The delay time change can be calculated from

$$\Delta t = \frac{2\Delta L}{c} \tag{1}$$

where ΔL is the length change from ruler, and $c=3\times10^8$ m/sec. is the speed of light in vacuum. For high accuracy, one needs to consult a physical constant table to find out a more accurate speed of the light and consider the refractive index of the air in calculation.

The sliding scale is a differential type: the stationary scale has 1.00 mm divisions and the moving scale has 0.95 mm divisions. The resolution is 0.05 mm in moving distance reading (0.1 mm round-trip) which corresponding to 0.33 ps delay change. The manual dial can also be used to estimate the delay length change. Each turn equals to a $2\Delta L = 1.219$ mm delay length change, which corresponds to a $\Delta t = 4.06$ picoseconds delay time change.

Figure 3. Delay length change ruler for the VariDelayTM device. The marked unit in the stationary scale is in centimeters with millimeter subdivisions.

Warning: Applying excessive force to overextend the delay range may result in damage of the VariDelayTM device. Please leave 1-2 millimeters at the end of travel to prevent the device from excessive travel damage.

6.3 Polarization properties

The VariDelayTM device employs free space optics to adjust optical path length. Therefore, the polarization state will not change during delay adjustment. However, the standard single mode input/output fibers may transform the input polarization state from one to the other at the output.

For high polarization stabilities, one can use the polarization maintaining VariDelayTM device that has PM fiber pigtails at both input and output ports. As previously mentioned, the PM VariDelayTM is designed for single linear polarization state input aligned at the specified PM fiber axis. If the input polarization state is aligned at 90-degree orientation to the specified polarization state, the polarization state may be transformed during propagation. Therefore, it is important to match the source polarization state to the specified PM VariDelayTM orientation before operating the device. Unless specified otherwise, the factory default setting is for slow axis orientation.

Contact Information

For additional information, please contact us at the numbers on the first page of this manual. User can also contact us via e-mail at: <u>info@generalphotonics.com</u>. We will typically respond within 24 hours after we receive the message.